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Abstract

Owning to advancements in sensor‐based, non‐destructive phenotyping platforms,

researchers are increasingly collecting data with higher temporal resolution. These

phenotypes collected over several time points are cataloged as longitudinal traits

and used for genome‐wide association studies (GWAS). Longitudinal GWAS typically

yield a large number of output files, posing a significant challenge to data interpreta-

tion and visualization. Efficient, dynamic, and integrative data visualization tools are

essential for the interpretation of longitudinal GWAS results for biologists; however,

these tools are not widely available to the community. We have developed a flexible

and user‐friendly Shiny‐based online application, ShinyAIM, to dynamically view and

interpret temporal GWAS results. The main features of the application include (a)

interactive Manhattan plots for single time points, (b) a grid plot to view Manhattan

plots for all time points simultaneously, (c) dynamic scatter plots for p‐value‐filtered
selected markers to investigate co‐localized genomic regions across time points, (d)

and interactive phenotypic data visualization to capture variation and trends in phe-

notypes. The application is written entirely in the R language and can be used with

limited programming experience. ShinyAIM is deployed online as a Shiny web server

application at https://chikudaisei.shinyapps.io/shinyaim/, enabling easy access for

users without installation. The application can also be launched on a local machine

in RStudio.
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1 | INTRODUCTION

Due to the increased availability of high‐throughput phenotyping

platforms, there is growing interest in the quantitative genetics of

longitudinally measured traits, i.e., traits that are measured over

multiple time points by advanced imaging systems (Araus & Kefau-

ver, 2018; Araus, Kefauver, Zaman‐Allah, Olsen, & Cairns, 2018).

For example, the application of GWAS to abiotic stress responses,

such as drought, salinity, and temperature stress, measured at

temporal resolution may provide insights into the mechanisms

underlying plant physiological processes measured throughout the

duration of stress or development (Busemeyer et al., 2013; Moore

et al., 2013; Topp et al., 2013; Slovak et al., 2014; Würschum et

al., 2014; Yang et al., 2014; Bac‐Molenaar, Vreugdenhil, Granier, &

Keurentjes, 2015; Campbell, Walia, & Morota, 2018).

Data visualization is a fundamental aspect of big data analysis in

genetics. Manhattan plots are standard tools used to visualize GWAS

results and to identify the genomic regions associated with a givenThis manuscript was previously deposited as a preprint at https://doi.org/10.1101/383026.
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phenotype. However, the static nature of these plots limits the infor-

mation that can be displayed and extracted. Further, the number of

Manhattan plots that can be viewed at one time is limited, making

comparisons across phenotypes tedious. The situation becomes more

challenging in the case of longitudinal GWAS, which is performed

across multiple time points, with each time point producing a Man-

hattan plot. Furthermore, it is difficult to share GWAS outputs in an

easy and convenient way, requiring novel applications for dynamic

data visualization and sharing. Many browsers have been built to

visualize GWAS outputs (e.g., Cuellar‐Partida, Renteria, & MacGre-

gor, 2015; Juliusdottir, Banasik, Robertson, Mott, & McCarthy, 2018;

Khramtsova & Stranger, 2017; Ziegler, Hartsock, & Baxter, 2015).

However, none of these are specifically tailored for longitudinal

traits. Further, existing applications do not offer features for the

dynamic visualization of Manhattan plots online and for comparisons

across time points simultaneously.

To address these limitations, we have developed a Shiny‐based
application, ShinyAIM, for visualizing and interpreting longitudinal

GWAS outputs in an interactive way. The application is distinct from

previously developed GWAS visualization browsers because it is

specifically designed for longitudinal traits, allowing the simultaneous

visualization of all time points or phenotypes and comparisons of

top associated markers across time points. The interactive and inte-

grative GWAS and phenotypic data visualization features embedded

in the application offers a new resource for users to readily extract

extensive information from temporal GWAS results.

2 | OVERVIEW OF ShinyAIM

2.1 | Methods

ShinyAIM is entirely written in the R language (R Core Team 2018)

with the underlying R code encapsulated by the shiny R package

(Chang, Cheng, Allaire, Xie, & McPherson, 2018), which is a web

application framework for R, offering an interactive graphical user

interface. Shiny has been making inroads into plant breeding and

quantitative genetics for research and teaching purposes, such as

Be‐Breeder (Fritsche‐Neto & Matias, 2016) and ShinyGPAS (Morota,

2017). ShinyAIM leverages the cumulative utility of the R packages

manhattanly (Bhatnagar, 2016), plotly (Sievert et al., 2017) and

ggplot2 (Wickham, 2016) to create a cohesive web browser‐based
application. The ShinyAIM application does not require any working

knowledge of R and is intuitively operated through graphical user

interface. ShinyAIM is hosted by a Shiny web server (https://chikuda

isei.shinyapps.io/shinyaim/) for online use or can be run locally

within RStudio by running the code shiny::runGitHub(“ShinyAIM”,

“whussain2”). Alternatively, the ShinyAIM source code and sample

files can be directly downloaded from the GitHub repository

(https://github.com/whussain2/ShinyAIM). From the downloaded

directory, the source file named app.R in RStudio can be run by

clicking the Run App button. The ShinyAIM application is open

source and is distributed under Artistic License 2.0.

2.2 | Usage

The starting page of the ShinyAIM application includes the Information

tab with detailed information on how to format and upload the data. The

video demonstration illustrating the application usage is also available

(https://youtu.be/5-JLMpSiwv4). ShinyAIM is aimed for visualization of

GWAS outputs and does not perform GWAS analysis. There are five

required columns in the user data file labeled as “timepoint” (time point),

“marker” (marker name), “chrom” (chromosome number), “pos” (marker

position), and “P” (marker p‐value) for Manhattan plot visualizations. For

phenotypic data visualization, the data file must have two columns

including “timepoint” (time point), and “Value” (phenotypic value). Further

detailed instructions regarding the data formatting and column naming

can be found in the main Information tab. In addition, the sample data

files can be directly downloaded by clicking the “Download Sample File”

button shown on top of the sidebar panel in the main tab.

The ShinyAIM application hosted on the server can handle 200–
330 k markers for the visualization of interactive Manhattan plots.

However, we suggest to launch the application locally by running

the code shiny::runGitHub(“ShinyAIM”, “whussain2”) in RStudio for

datasets with millions of markers. Alternatively, filtering can be done

based on p‐values by removing markers with large p‐values prior to

uploading the input file for visualization.

3 | MAIN FEATURES AND FUNCTIONALITY

The application has four main features to explore GWAS results: (a)

interactive Manhattan plots for single time points, (b) Manhattan grid

plot to compare results across all time points simultaneously, (c) dynamic

views of p‐value filtered top associated markers in a scatter plot to iden-

tify co‐localized markers over time, and (d) visualization of phenotypic

data used for GWAS (Figure 1). These features are supported by user‐
defined data filtering criteria in ShinyAIM to smoothly navigate the appli-

cation. Each feature is briefly described in the following sections.

3.1 | Interactive Manhattan plots

In the interactive Manhattan plots panel, users can interactively view

the Manhattan plot for each time point (Figure 1A). After the correct

file format has been selected and the file has been uploaded, the

available time points will be automatically updated in the “Choose

Time Point or Phenotypes” menu. An interactive Manhattan plot is

automatically generated on the right‐hand panel after selecting a tar-

get time point. Users can move the mouse over the points in the

plot to display detailed information, including the marker name, posi-

tion, chromosome location, and −log10 p‐value. Furthermore, it is

possible to zoom in on potential candidate regions to obtain addi-

tional detail. ShinyAIM offers the flexibility to choose the signifi-

cance level by moving the slider input bar. In addition, users have a

choice to display a list of markers arranged in decreasing order of p‐
values in the table below the Manhattan plot panel. The display also
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includes marker information in the input data file. The slider input

bar controls the number of markers shown in the table.

3.2 | Manhattan grid plot

The Manhattan grid plot tab allows users to visualize the Manhattan

plots combined for all time points and can be used to explore how

GWAS peaks change over time to facilitate data interpretation (Fig-

ure 1B). The significance threshold for markers can be modified by

moving the slider input bar. Moreover, ShinyAIM enables users to

choose the number of columns and rows in the grid plot by moving

the slider input bar “Select the Number of Columns in Grid Plot.”

3.3 | Comparison of associated markers

Users are able to dynamically view only the top associated markers

in a scatter plot (Figure 1C). This feature is implemented in

ShinyAIM to enable users to focus only on the topmost associated

markers and compare these markers across time points to identify

co‐localized regions. Users can select the number of markers dis-

played in a scatter plot by filtering the markers based on p‐values.
This is achieved by directly typing or selecting the option “Select

Top Markers Based on p‐value.” The scatter plot is interactive, and

users can move the mouse over a point to display information,

including the time point, chromosome name, position of the marker,

name of the marker, and −log10 p‐value (Figure 1C).

3.4 | Phenotypic data visualization

Phenotypic data visualization helps users to view phenotypes used for

GWAS in the form of dynamic histograms and density plots (Figure 1D).

The trends and variability in phenotypic values at each time point can be

visualized using box plots. All plot types are interactive, and users can

move the mouse over a particular point to obtain detailed information.

F IGURE 1 Main interface of the ShinyAIM application. Screenshots of panels for the main tabs are shown. (a) The “Interactive Manhattan
Plots” tab allows users to display interactive Manhattan plots for a selected time point. Users have the flexibility to choose the significance
level and can display the top associated markers in tabular format. (b) The “Manhattan Grid Plot” tab allows users to visualize Manhattan plots
for all time points simultaneously. Users have the flexibility to choose the significance level and the number of columns in the grid plot. (c) The
“Comparison of Associated Markers” tab allows users to filter markers based on p‐values, display a scatter plot for comparisons across all time
points, and search for co‐localized markers. (d) The “Phenotypic Data Visualization” tab generates histogram and density plots and summarizes
trends in temporal phenotypic data in the form of box plots
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4 | CONCLUSION

We have developed a user‐friendly integrative Shiny‐based applica-

tion to dynamically visualize and interpret longitudinal GWAS results,

providing an easy‐to‐use online tool to the community.

AVAILABILITY

The source code for the ShinyAIM application is freely available at

the GitHub repository https://github.com/whussain2/ShinyAIM or at

the Zenodo repository https://zenodo.org/record/1422835. The

source code is licensed under Artistic License 2.0. ShinyAIM can be

launched on any system that has RStudio installed or available online

at the Shiny web server https://chikudaisei.shinyapps.io/shinyaim/.
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